

Graph-Structured Visual Imitation

Maximilian Sieb*, Zhou Xian*, Audrey Huang, Oliver Kroemer, Katerina Fragkiadaki

Visual Imitation Learning

Learn policy from visual input so that the robot's actions create the same effect on the environment as the human

Focus of this work:

Find interpretable state representation that allows

for sample-efficient visual imitation learning from

single demonstration

Visual Entity Graphs for Visual Imitation

- 1. Detect object and hand entities in image
- 2. Detect object-level pixel entities
- 3. Establish **geometric relations** between the entities
- 4. Place attention on "important" edges

Correspondence of Visual Entity Graphs

Establish correspondence between demonstration and imitation

From Visual Entity Graphs to Policy Learning

	Demonstration	Imitation	Imitation different object instance
Pushing	Demo		Imitation - novel object
Pushing – Direction Change		Lm/ Californ	
Stacking	Demo	Imitation - cluttered	Imitation - novel object
Pouring	Demo	Imitation	Imitation novel object
			7
			/